Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone
نویسندگان
چکیده
BACKGROUND & OBJECTIVES Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering. METHODS HA-SMC and TCP/HA-SMC constructs were induced in the osteogenic medium for three weeks prior to implantation in nude mice. The HA-SMC and TCP/HA-SMC constructs were implanted subcutaneously on the dorsum of nude mice on each side of the midline. These constructs were harvested after 8 wk of implantation. Constructs before and after implantation were analyzed through histological staining, scanning electron microscope (SEM) and gene expression analysis. RESULTS The HA-SMC constructs demonstrated minimal bone formation. TCP/HA-SMC construct showed bone formation eight weeks after implantation. The bone formation started on the surface of the ceramic and proceeded to the centre of the pores. H&E and Alizarin Red staining demonstrated new bone tissue. Gene expression of collagen type 1 increased significantly for both constructs, but more superior for TCP/HA-SMC. SEM results showed the formation of thick collagen fibers encapsulating TCP/HA-SMC more than HA-SMC. Cells attached to both constructs surface proliferated and secreted collagen fibers. INTERPRETATION & CONCLUSIONS The findings suggest that TCP/HA-SMC constructs with better osteogenic potential compared to HA-SMC constructs can be a potential candidate for the formation of tissue engineered bone.
منابع مشابه
Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect
Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...
متن کاملComparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect.
BACKGROUND Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. METHODS New Zealand rabbits (...
متن کاملBiodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph.
Three types of ceramic scaffolds with different composition and structure [namely synthetic 100% hydroxyapatite (HA; Engipore), synthetic calcium phosphate multiphase biomaterial containing 67% silicon stabilized tricalcium phosphate (Si-TCP; Skelite) and natural bone mineral derived scaffolds (Bio-oss)] were seeded with mesenchymal stem cells (MSC) and ectopically implanted for 8 and 16 weeks ...
متن کاملA Comparison of the Process of Remodeling of Hydroxyapatite/Poly-D/L-Lactide and Beta-Tricalcium Phosphate in a Loading Site
Currently, the most commonly used bioresorbable scaffold is made of beta-tricalcium phosphate (β-TCP); it is hoped that scaffolds made of a mixture of hydroxyapatite (HA) and poly-D/L-lactide (PDLLA) will be able to act as novel bioresorbable scaffolds. The aim of this study was to evaluate the utility of a HA/PDLLA scaffold compared to β-TCP, at a loading site. Dogs underwent surgery to replac...
متن کاملPreparation of porous tri-calcium phosphate ceramic scaffold for bone tissue engineering
Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bioceramic scaffolds. It was found that porous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 137 شماره
صفحات -
تاریخ انتشار 2013